Prépublications Du Laboratoire Maxiset Comparisons of Procedures, Application to Choosing Priors in a Bayesian Nonparametric Setting Maxiset Comparisons of Procedures, Application to Choosing Priors in a Bayesian Nonparametric Setting. *

نویسندگان

  • Florent Autin
  • Dominique Picard
چکیده

In this paper our aim is to provide tools for easily calculating the maxisets of several procedures. Then we apply these results to perform a comparison between several Bayesian estimators in a non parametric setting. We obtain that many Bayesian rules can be described through a general behavior such as being shrinkage rules, limited, and/or elitist rules. This has consequences on their maxisets which happen to be automatically included in some Besov or weak Besov spaces, whereas other properties such as cautiousness imply that their maxiset conversely contains some of the spaces quoted above. We compare Bayesian rules taking into account the sparsity of the signal with priors which are combination of a Dirac with a standard distribution. We consider the case of Gaussian and heavy tail priors. We prove that the heavy tail assumption is not necessary to attain maxisets equivalent to the thresholding methods. Finally we provide methods using the tree structure of the dyadic aspect of the multiscale analysis, and related to Lepki’s procedure, achieving strictly larger maxisets than those of thresholding methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large variance Gaussian priors in Bayesian nonparametric estimation: a maxiset approach∗

In this paper we compare wavelet Bayesian rules taking into account the sparsity of the signal with priors which are combinations of a Dirac mass with a standard distribution properly normalized. To perform these comparisons, we take the maxiset point of view: i. e. we consider the set of functions which are well estimated (at a prescribed rate) by each procedure. We especially consider the sta...

متن کامل

Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models

Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...

متن کامل

Bayesian Aspects of Some Nonparametric Problems

We study the Bayesian approach to nonparametric function estimation problems such as nonparametric regression and signal estimation. We consider the asymptotic properties of Bayes procedures for conjugate (=Gaussian) priors. We show that so long as the prior puts nonzero measure on the very large parameter set of interest then the Bayes estimators are not satisfactory. More specifically, we sho...

متن کامل

Unobserved Heterogeneity in Longitudinal Data An Empirical Bayes Perspective

Abstract. Empirical Bayes methods for Gaussian and binomial compound decision problems involving longitudinal data are considered. A new convex optimization formulation of the nonparametric (Kiefer-Wolfowitz) maximum likelihood estimator for mixture models is used to construct nonparametric Bayes rules for compound decisions. The methods are illustrated with some simulation examples as well as ...

متن کامل

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004